sklearn.linear_model.LinearRegression¶ class sklearn.linear_model. LinearRegression (*, fit_intercept = True, copy_X = True, n_jobs = None, positive = False) [source] ¶. Ordinary least squares Linear Regression. LinearRegression fits a linear model with coefficients w = (w1, …, wp) to minimize the residual sum of squares between the …
In each stage a regression tree is fit on the negative gradient of the given loss function. sklearn.ensemble.HistGradientBoostingRegressor is a much faster variant of this algorithm for intermediate datasets ( n_samples >= 10_000 ). Read more in the User Guide. Parameters: loss{'squared_error', 'absolute_error', 'huber', 'quantile ...